MapReduce分区
分区概述
在 MapReduce 中, 通过我们指定分区, 会将同一个分区的数据发送到同一个Reduce当中进行处理。例如: 为了数据的统计, 可以把一批类似的数据发送到同一个 Reduce 当中, 在同一个 Reduce 当中统计相同类型的数据, 就可以实现类似的数据分区和统计等
其实就是相同类型的数据, 有共性的数据, 送到一起去处理, 在Reduce过程中,可以根据实际需求(比如按某个维度进行归档,类似于数据库的分组),把Map完的数据Reduce到不同的文件中。分区的设置需要与ReduceTaskNum配合使用。比如想要得到5个分区的数据结果。那么就得设置5个ReduceTask。
需求:将以下数据进行分开处理
详细数据参见partition.csv 这个文本文件,其中第五个字段表示开奖结果数值,现在需求将15以上的结果以及15以下的结果进行分开成两个文件进行保存
分区步骤
1、定义 Mapper
这个 Mapper 程序不做任何逻辑, 也不对 Key-Value 做任何改变, 只是接收数据, 然后往下发送
2、自定义Partitioner
主要的逻辑就在这里, 这也是这个案例的意义, 通过 Partitioner 将数据分发给不同的 Reducer
3、定义 Reducer 逻辑
这个 Reducer 也不做任何处理, 将数据原封不动的输出即可
4、主类中设置分区类和ReduceTask个数
📢博客主页:
📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
📢本文由 Lansonli 原创,首发于 CSDN博客🙉
📢大数据系列文章会每天更新,停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨